579 research outputs found

    The Use of Mobile Devices as Group Wisdom Support Systems to Support Dynamic Crowdsourcing Efforts

    Get PDF
    Early group decision support systems (GDSS) literature discussed how group size and member proximity impacted the design of the room and technology necessary to facilitate group decision-making. A Legislative Session is the early term for a large group that holds face to face meetings. With advances in mobile technology, we can turn any large group meeting into an opportunity to capture the wisdom of the crowd. This paper will describe how both crowdsourcing initiatives and group wisdom support systems (GWSS) initiatives can be supported by mobile devices. An example of a keynote address at an academic conference and the use of JoinSpeaker technology will be presented as a way to hold a dynamic crowdsourcing effort

    The Case for a Mixed-Initiative Collaborative Neuroevolution Approach

    Get PDF
    It is clear that the current attempts at using algorithms to create artificial neural networks have had mixed success at best when it comes to creating large networks and/or complex behavior. This should not be unexpected, as creating an artificial brain is essentially a design problem. Human design ingenuity still surpasses computational design for most tasks in most domains, including architecture, game design, and authoring literary fiction. This leads us to ask which the best way is to combine human and machine design capacities when it comes to designing artificial brains. Both of them have their strengths and weaknesses; for example, humans are much too slow to manually specify thousands of neurons, let alone the billions of neurons that go into a human brain, but on the other hand they can rely on a vast repository of common-sense understanding and design heuristics that can help them perform a much better guided search in design space than an algorithm. Therefore, in this paper we argue for a mixed-initiative approach for collaborative online brain building and present first results towards this goal.Comment: Presented at WebAL-1: Workshop on Artificial Life and the Web 2014 (arXiv:1406.2507

    Quantification of epidermal growth factor receptor T790M mutant transcripts in lung cancer cells by real-time reverse transcriptase-quantitative polymerase chain reaction.

    Full text link
    peer reviewedA simple and sensitive real-time reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was developed to quantify threonine-to-methionine substitution at amino acid position 790 (T790M) mutant transcripts in a wild-type (wt) epidermal growth factor receptor background. The assay is based on three unmodified oligonucleotides, and both SYBR Green and a Taqman probe can be used. To increase the discrimination between mutant and wt signals, ARMS (amplification refractory mutation system) and LNA (locked nucleic acid) primers were tested, but a benefit was observed only with plasmids and not with cellular complementary DNA. The RT-qPCR assay using transcript-specific primers can detect as few as 1% T790M transcripts in a wt background and, therefore, will be useful in RNA interference studies specifically targeting mutant RNA

    Boganmeldelser

    Get PDF
    Book review

    A Simultaneous Stacking and Deblending Algorithm for Astronomical Images

    Full text link
    Stacking analysis is a means of detecting faint sources using a priori position information to estimate an aggregate signal from individually undetected objects. Confusion severely limits the effectiveness of stacking in deep surveys with limited angular resolution, particularly at far infrared to submillimeter wavelengths, and causes a bias in stacking results. Deblending corrects measured fluxes for confusion from adjacent sources; however, we find that standard deblending methods only reduce the bias by roughly a factor of two while tripling the variance. We present an improved algorithm for simultaneous stacking and deblending that greatly reduces bias in the flux estimate with nearly minimum variance. When confusion from neighboring sources is the dominant error, our method improves upon RMS error by at least a factor of three and as much as an order of magnitude compared to other algorithms. This improvement will be useful for Herschel and other telescopes working in a source confused, low signal to noise regime.Comment: accepted to The Astronomical Journal. 18 pages, 6 figure

    Low and intermediate-mass close binary evolution and the initial - final mass relation

    Full text link
    Using Eggleton's stellar evolution code, we carry out 150 runs of Pop I binary evolution calculations, with the initial primary mass between 1 and 8 solar masses the initial mass ratio between 1.1 and 4, and the onset of Roche lobe overflow (RLOF) at an early, middle, or late Hertzsprung-gap stage. We assume that RLOF is conservative in the calculations, and find that the remnant mass of the primary may change by more than 40 per cent over the range of initial mass ratio or orbital period, for a given primary mass. This is contrary to the often-held belief that the remnant mass depends only on the progenitor mass if mass transfer begins in the Hertzsprung gap. We fit a formula, with an error less than 3.6 per cent, for the remnant (white dwarf) mass as a function of the initial mass of the primary, the initial mass ratio, and the radius of the primary at the onset of RLOF. We also find that a carbon-oxygen white dwarf with mass as low as 0.33 solar masses may be formed if the primary's initial mass is around 2.5 solar masses.Comment: 7 pages for main text, 11 pages for appendix (table A1), 12 figure

    On the origin of non-monotonic doping dependence of the in-plane resistivity anisotropy in Ba(Fe1−xTx_{1-x}T_x)2_2As2_2, TT = Co, Ni and Cu

    Full text link
    The in-plane resistivity anisotropy has been measured for detwinned single crystals of Ba(Fe1−x_{1-x}Nix_x)2_2As2_2 and Ba(Fe1−x_{1-x}Cux_x)2_2As2_2. The data reveal a non-monotonic doping dependence, similar to previous observations for Ba(Fe1−x_{1-x}Cox_x)2_2As2_2. Magnetotransport measurements of the parent compound reveal a non-linear Hall coefficient and a strong linear term in the transverse magnetoresistance. Both effects are rapidly suppressed with chemical substitution over a similar compositional range as the onset of the large in-plane resistivity anisotropy. It is suggested that the relatively small in-plane anisotropy of the parent compound in the spin density wave state is due to the presence of an isotropic, high mobility pocket of reconstructed Fermi surface. Progressive suppression of the contribution to the conductivity arising from this isotropic pocket with chemical substitution eventually reveals the underlying in-plane anisotropy associated with the remaining FS pockets.Comment: 12 pages, 9 figure
    • …
    corecore